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Abstract 

An optimal Pension investment strategy, under the Constant Elasticity of Variance (CEV) model 

is developed. The Pension Fund Investor (PFI) invested in both a risky asset (stock) and a riskless 

asset (Cash account), modeled with CEV process and constant interest rate, respectively.  Here, 

the Pension Fund Administrator (PFA) considered and investigated the relevance/significance of 

extra stochastic contribution, during non-turbulent period, as a form of extra voluntary 

contribution, as provided by the Pension Reform Act of 2006, as amended. A constrained Pension 

Wealth optimization program was developed and transformed into a nonlinear partial differential 

equation, using the associated Hamilton Jacobi Bellman equation. The explicit solution of the 

constant relative risk aversion (CRRA) is obtained, using Legendre transform, dual theory, and 

change of variable methods. I presented and proved theorem on pension wealth investment 

strategy and the optimal utility function is also presented. It is established herein, with the optimal 

utility function that the extra stochastic contribution is minimally significant to the satisfaction of 

the PFI, due to its partial presence in the optimal utility function strategy. 

Key words: Strategized; Portfolio; CRRA; CEV; Accumulating Pension. 

 

1. Introduction  

The Stock market which have witnessed a low investment returns, due to serious global economic 

downturn [1], hence have necessitated the continuous reviews of the various existing economic 

models [2-13] that bothers on investment strategies, and many more. Based on the structure of the 

Defined Contribution (DC) Pension Reform Scheme, the satisfaction of the PFI is predetermined 

by the level of investment returns, which is a function of the investment strategy, hence the need 

to continue reviewing all these many economic models becomes necessary [8]. As the trading 

economy is versed, so are the various players. Investments in the Stock market, for instance can 

come from different funds such as single/private investors, corporations, Government, employees 

of labor, and many more. In this work, our interest is in the later, as it is rooted in the contributory 

Pension scheme of 2006, as amended. 

There are two basic types of Pension scheme; the defined benefit (DB) and the defined contrition 

(DC). In this research, we shall only base our work on the DC scheme. In DC Pension scheme, the 

employers are to pay a stipulated amount into the Pension retirement savings account (RSA) 

alongside with the employer. At retirement, the lump sum and the annuity is predetermined by the 
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total investment yield (returns), and not fixed as in the DB scheme. The beauty of this scheme is 

that it is fully funded, because of the contributory nature.  

Many articles have been published on optimal portfolio management, whose riskless and risky 

assets are modeled, using both Geometric Brownian Motion (GBM) process [3-5, 14-15] and 

Constant Elasticity of Variance (CEV) process [6, 8, 12, 16-17].  

1.1. Research Motivation  

[3] Introduced a new concept, “Extra Contribution”, in the literature. In their work, they simply 

applied the provision of the Pension Reform Act of 2006, as amended, where the contributors are 

at liberty to make extra contribution to encourage extra investment returns. In their work, the 

investor chose a Constant Relative Risk Aversion (CRRA) Utility function. Their work revealed 

the need for the Pension Manager to increase the proportion of his wealth to be invested in Bond 

and Stock, and reduce the proportion that is invested in Cash. Continuing in that direction, [4] 

replicated the work of [3], but in their work, they considered “extra Stochastic” contribution. Their 

result is similar to that of [3]. It is important to note that both [3] and [4] followed the well-known 

GBM in modeling their Pension wealth process. However, [8,] used the well-known CEV in 

modeling their Pension wealth process. Significant results and observations were made, which 

includes the formulation and the proof of a theorem that shows that the elastic parameter must not 

be equal to one, amongst other findings, and this motivated this work. My approach is similar to 

that of [3,4,8], but our interest is to verify the significance or otherwise of extra stochastic 

contribution a CEV-generated Pension wealth. An additional assumption is made in the sequel. 

1.2. Domain of Research and Some Preliminaries  

The domain of this article is the complete probability space, (Ω, 𝐹, 𝑃), where Ω is a real space and 

𝑃 is a probability measure, ( ) ( ) ,
s tw t w t are two standard orthogonal Brownian motions,

( ) ( ) ,t sF t F t are right continuous filtrations whose information are generated by the two standard 

Brownian motions ( ) ( ) ,
s tw t w t , whose sources of uncertainties are respectively to the Stock 

market and time variance. 

Considering a complete and frictionless financial market that is continuously open over the fixed 

time interval [0, 𝑇], 𝑇 > 0 (the retirement age). I assume that the market is composed of the risk-

less asset (Bond), and risky asset (Stock). 

2. The Pension Wealth Constrained Optimization Program 

Under this session, we shall present and discuss the trading economy and formulate the 

optimization model for the trading/investment period. 

2.1. The Financial Market  

We shall consider a trading economy that is characterized by a riskless asset (Money in the Bank), 

and a risky asset (Stock). That is, the PFA’s portfolio consists of just two assets. 
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Let the risk-less asset, tC , say, at any positive time, t , evolve as;   

t tdC rC dt= ,
                                                                                                                                

(2.1.1) 

Where r represents constant rate of interest. 

Next, we denote the price of the risky asset (stock) at any positive time, t , by tS , as in [6], and [8], 

thus; 

1

t t t tdS S dt kS dW += + ,
                                                                                                             

(2.1.2) 

 

Where ( )r represents the instantaneous rate of return on stock, β (β ≤ 0) is the elastic constant 

parameter, k is a constant, 
tkS   represents the instantaneous volatility. 

Let  ; 0tW t  denote a standard Brownian motion, defined on a probability space, ( ),F,P where 

 tF F= is an augmented filtration generated by the Brownian motion. 

2.2. The Assumptions of the Pension Wealth Constrained Optimization Program 

Consistent with the Nigerian Pension Reform Act of 2006, as amended [8], we make the following 

assumptions  

(a) The Pension Scheme accumulates wealth  

(b) There are different categories of contributors 

(c) The contributors will not willingly withdraw from the scheme 

(d) The trading economy is turbulent-free. 

(e) Extra stochastic contribution is used as the probable amortization fund 

(f) Orthogonal relationship is considered between stock and time. 

 

2.3. Formation of the Constrained Optimization Program 

Let us denote the investment made in Stock as su such that that kept as Money in the account is 

given by 1c su u= − . 

Let the stochastic differential equation that governs the variance of wealth generation be given by 

( ) ( ) (1 ) ( )t t
s s

t t

ds dc
dy t u y t u y t dp

s c
= + − +                                                                                                              (2.3.1) 

Subject to:         
0

1 0

s

c s

u

u u



= − 
                                                                                                                         (2.3.1a) 
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Where;  

  ( )y t is the accumulated Pension wealth with time, t  

  dp is the regular contribution process, and is defined by; 

  
1(1 )i i tdp dt dw and ks   += + + = ,                                                                                      (2.3.1b)          

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( )ni n and n an eger staff loading    = − = = = =   

Combining (2.1.1), (2.1.2), (2.3.1b) with (2.3.1) s.t (2.3.1a), and simplifying 

  1( ) ( ) (1 ) ( ( ) 1)s s i i s t tdy t y t u r u r dt u y t ks dw   += + − + + + +                                                              (2.3.2) 

Subject to:      
0

1 0

s

c s

u

u u



= − 
,                                                                                                                           (2.3.2a)  

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( ),

var

n

i

i n and n an eger staff loading

is ious amount contributed

    



= − = = = = 
 

Based on the wealth process in (2.3.2) s.t (2.3.2a), the PFA seeks a strategy,
su , which maximizes 

the utility function, such that ( )( )max (T) , (t)su E U Y u =  . Where u( )•  is an increasing concave 

utility function, which satisfies the Inada conditions; 

( ) 0,U  + = and (0)U  +  (cf. Gao [6]) 

3. The Pension Wealth Optimization 

Applying the associated H. J. B. Equation to equation (2.3.2) s.t (2.3.2a), we derive 

   ( )

( ) ( )

2 2 2

1

2 2 2 2 2 1

1
( ) 1

2

1
( ) ( ) 1 0

2

t s t y s s i i ss t

s s t sy t s

H H s H y t u r u r H k s

H u y t u k s H k s u y t



 

    +

+

+

+ + + − + + +

+ + + + =

                                                      (3.1) 

Subject to:      
0

1 0

s

c s

u

u u



= − 
,                                                                                                                             (3.1a)  

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( ),

var

n

i

i n and n an eger staff loading

is ious amount contributed

    



= − = = = = 
 

 

To obtain the optimal value, 
su , we differentiate equation (3.1) s.t (3.1a) with respect to su , thus 
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( )

( ) ( )

2 2 2 2 2 1

1

2 2 2 2 2 1

1
1

2

1
max ( ) ( ) 1 ( ) 0

2

t s t ss t y i i sy t

y s s yy s t sy t s

H H s H k s H H k s

H y t u r u r H u y t k s H k s u y t

 

 

  



+ +

+

+

+ + + + + +

 
+ − + + + = 

 

                             (3.2) 

Subject to:      
0

1 0

s

c s

u

u u



= − 
,                                                                                                                             (3.2a)  

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( ),

var

n

i

i n and n an eger staff loading

is ious amount contributed

    



= − = = = = 
 

and this yields 

2 2

1 ( )

( ) ( ) ( )

y sy

s

t yy yy

H Hr s
u

y t y t k s H y t H


 −

= − + − +  
 

                                                                                            (3.2b) 

Replacing su in equation (3.2) with 
su  in equation (3.2b) 

 

( )
 

2 2

1

22 2 22 2
2 2

2 2 2 4

1
(1 ) ( )

2

1 1
0

2 2

t s t ss y i i

y sy y sy

t

yy t t yy yy

H H s H k s H y t r r

H H H s Hrr
s r k s

H k s k s H H





 

   




+

++ + + + − + +

 −−  
+ − + + − + + − =   

   

                                    (3.3) 

Subject to:      
0

1 0

s

c s

u

u u



= − 
,                                                                                                                              (3.3a)  

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( ),

var

n

i

i n and n an eger staff loading

is ious amount contributed

    



= − = = = = 
 

Since the stochastic constrained control problem described in the previous session has been 

converted to a constrained nonlinear stochastic partial differential equation, next we solve for H
in (3.3) s.t (3.3a) and subsequently substitute it into (3.2b), to enable us obtain the optimal wealth 

generation policy (i.e., the control strategy). To achieve this, we apply the Dual theory and 

Legendre transformation techniques, respectively. 
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4. The Dual and Legendre Transformation on (3.3) s.t (3.3a) 

Here, we transform the nonlinear second order partial differential equation (4.4) into a linear PDE, 

using the Dual theory and Legendre transformations, not limited to Gao [6], Njoku et al [8], Zhang 

et al [15], that is; 

zy = and

zz

sz
ys

zz

yy

zz

sz
sssssstt














ˆ

ˆ
,

ˆ

1
,

ˆ

ˆ
ˆ,ˆ,ˆ

2 −
=

−
=−=== .                                              (4.1) 

Taking into equations (4.1) and (3.3) s.t (3.3a) 

( )

( )

2 2 2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

4 4

(1 )
2 2

2
0

2 2

ss sz zz
t s t i

zz t

zz sz t
sz sz

t zz

k s H k s H z H r
H H s z z zy t r zr

H k s

z H r r s H k s
sz H szrH

k s H

 








  

 


+ + +
+ + − + + − + + +

− +
− − + − =

                   (4.2) 

Setting 
zy H= = −  into (4.2), and differentiating the dual  and value function H with respect 

to z , we obtain 

( )

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

4 4 2 2

2
(1 ) ( )

2 2

( 2 ) 2 2
0

2 2 2

ss z s sz s zz zz z
t t t i z

z z t t

zz s t z s zs t s zz
zs s sz

t z z

k s k s k s z z
s z r r

k s k s

z z r r s k s s k s
sz z s szr

k s

  

 

 



         
      

 

        
   

 

+ + +

+ + − + + − − − − + +

+ − +
+ + + − + − =

      

                                                                                                                                                    (4.3) 

Subject to:      
0

1 0

s

c s

u

u u



= − 
,                                                                                                                              (4.3a)  

4 5 6 14,5.6,....., 1 4, 5, 6,...., , 0, int ( ),

var

n

i

i n and n an eger staff loading

is ious amount contributed

    



= − = = = = 
 

where the associated strategy is given by 

( )
2 2

1
1

( ) ( )
s z s

t

r s
u z

y t k s y t


 

− −
= + + 

 
                                                                                                       (4.4) 

 

5. Utility Function Test 

To obtain the level of satisfaction the plan member gets from his/her investment, we obtain the 

explicit solution for the CRRA utility functions, using change of variable technique.  
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5.1 Explicit solution to the CRRA utility  

Similar to Gao [6], Njoku et al [8] and Zhang et al [5], we use 

( )
1

1, , , 1, 0qt s z z q q −=                                                                                                          (5.1.1) 

Assuming a solution form to (4.3) s.t. (4.3a), we have 

( ) ( ) ( ) ( ) ( )
1

1, , , ; 0, , 1qt s z z h t s t T h T s  −= + = =                                                                  (5.1.2) 

Obtaining the various first and second partial derivatives with respect to , ,t s z , we have  

( )
( )

( )

1 1 1 1 1 1
1 1 2

1 1 1 1 1 1

2

2
; ; ; ; ; 0

1 1 1

q q q q q q

t t s s z ss ss sz zz

q hh h
h z t h z z h z z z

q q q
      

− − −
− − − − − −

−− −
= + = = = = = =

− − −

                (5.1.3) 

Taking into (5.1.1), (5.1.2), (5.1.3) and (4.3) s.t (4.3a), we have 

( )

( ) ( ) ( ) ( )( )

1 2 2 2
2 2 2 2 21

1 2 21
1

14 4 4 4 4 4

2 2

2 1 1 1 1

2
1 0

q ss
t t t s s t s

t

q s s s
t t i i

t t t

k s q s sr
z s k s r s s k s

q ks q q q

r r
z t s t s t c r

k s k s k s


 



  

    
      

    
       

+
+−

+
−

+

  −
+ + − + − + − − + +   − − − −  

 
  + + + + + − + − + − = 

 

 

                                                                                                                                                 (5.1.4) 

Factoring out terms that depends on

1

1qz − , and z , and the ones that is independent of either of the 

two mentioned, we split (5.1.4) into three, thus 

( )

1 2 2 2
2 2 2 2 21 2 2

0
2 1 1 1 1

q ss
t t t s s t t

t

k s q s sr
z s k s r s s k s

q ks q q q


 



    
      

+
+−

  −
+ + − + − + − − − =   − − − −  

   

                                                                                                                                                 (5.1.5) 

1 2 21
1

4 4 4 4 4 4

2
0q s s s

t t t

r r
z

k s k s k s  

    +
−

 
+ + = 

 
                                                                                                                   (5.1.6) 

( ) ( ) ( )( )11 0t i it s t c r     +
 + + + − + − =

                                                                                             (5.1.7) 

This implies that 
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( )

2 2 2
2 2 2 2 22 2

0
2 1 1 1 1

ss
t t t s s t t

t

k s q s sr
s k s r s s k s

q ks q q q


 



    
      

+
+

  −
+ + − + − + − − − =   − − − −  

 

                                                                                                                                                 (5.1.8) 

2 2

4 4 4 4 4 4

2
0s s s

t t t

r r

k s k s k s  

     
+ + = 

 
                                                                                                                          (5.1.9) 

( ) ( ) ( )( )11 0t i it s t c r     +
 + + + − + − =

                                                                                        (5.1.10) 

Solving (5.1.10) at the boundary condition, ( ) 0T = , we obtain the continuous annuity of 

duration, T t− , yields  

( )
( )( )( )

( )
11 1

1

i i t

t

c s
t

r s

  




++ − + +
= −

+
                                                                                                           (5.1.11) 

8

2

r
r = −                                                                                                                                                          (5.1.12) 

Solving (5.1.8), observe firstly that the equation contains some variable coefficients, 2 2 2, , ,s s s s +

, and this makes obtaining solution somewhat difficult. However, in order to overcome this 

difficulty, we employ the services of power transformation and change of variable technique as in 

Gao [6], Zhang [15,], not limited to them. 

Assuming, 

( ) ( ) 2, , , th t s f t j j s = =                                                                                                 (5.1.13) 

Such that  

( ) ( ) ( ) ( )2 1 2 1 2 1
; 2 ; 2 2 1 2t t s j ss t j jjh f h s f h s f s f

  
   

− − −
= = = − +                                                 (5.1.14) 

                                                                                                  

then putting (5.1.13) and (5.1.14) into (5.1.18), assuming that the elastic parameter, 0 = (the 

GBM case) and simplifying gives 

( )
( )

2
2 2 2 2

1 0
1 1 1 1

t t t t

q s sr
f s f s k f f r

q k q q q

 


  −
+ − + − + − =   − − − −  

                                               (5.1.15)  

Solving (5.1.15), by assuming that;  
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( ) ( ) ( ) ( ) ( ) ( ) ( )
, ; 1, 0

t j t j t j

t t tf t j A A T T f A A t j
  

 = = =  = + and multiplying the outcome 

with  
( )
1

A t
, yields 

( )

( )
( )

( )

( )
( )

( )

( )

( ) ( )
( )

( )

( ) ( )

2 2

2 2

2

2 2
0

1 1 1 1

,

t j t j t j
t j t jt t t t

t t t

t j t j t j
t j t j

t

t

A s A s k A
j s j

A t A t A t

q s sr
s k j r

q k q q q

j s

  
 

  
 




  

 


+ + + −

 −
− + − + − = 

− − − − 

=

                                                    (5.1.16) 

Splitting (5.1.16) based on its dependency on ( )t j
and 

( )t j

t j


 , yields 

( )
( )

( )

2
2 2 2 2

1 0
1 1 1 1

t
t

A q s sr
s s k r

A t q k q q q

 


 −
+ − + − + − = 

− − − − 
                                                              (5.1.17) 

and  

( )2 21 0t ts s k + + =                                                                                                                                           (5.1.18) 

In (5.1.18), 0 tant t cons t =  =  

Considering terminal investment; ( ) ( ) ( ), 0 tan tan 0t T T T cons t cons t = =  =  =   

Solving (5.1.18) by multiplying with ( )A t and dividing by 2 21 ts s k+ −  and simplifying, yields 

( )
( )

( )
( )

2

2 2

2 2

1 1 1
0

1
t

t

s rq
r

q k q q
A A t

s s k





 − −
− +  

− − −  + =
+ −

                                                                                         (5.1.19) 

Solving the first order linear homogeneous equation (5.1.19), using integrating factor method 

Let 
( )

.
p t dt

I F = , where ( )
( )

( )

( )

2

2 2

2 2

1 1 1

1 t

s rq
r

q k q q
p t

s s k





 − −
− +  

− − −  =
+ −

 

Simplifying ( )p t , we have  

( )
( )( )

2

2 2

2 2

1 1 t

rk qrk s k srk
p t

q s s k

 



 − − + −
 =
 − + −
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Consequently,  

( )( )

2

2 2

2 2

1 1

.
t

rk qrk s k srk
dt

q s s k

I F

 



 
− − + − 

  − + −
 


=                                                                                                                                (5.1.20) 

Multiplying (5.1.19) with (5.1.20) and simplifying, we obtain 

( )( )

2

2 2

2 2

1 1

. 0
t

rk qrk s k srk
t

q s s k

t

d
A

dt

 



 
− − + − 

  − + −
 

 
 

= 
 
 

                                                                                                                            (5.1.21) 

Integrating (5.1.21) with respect to t , we have  

( )
( )( )

2

2 2

2 2

1 1 t

rk qrk s k srk
t

q s s k

A t C

 



 
− − + − −

  − + −
 =                                                                                                                                 (5.1.22) 

But,  

( ) ( ) 2, , , th t s f t j j s = =                                                                                                                                        (5.1.23) 

and 

( )
( )( )( )

( )
11 1

1

i i t

t

c s
t

r s

  




++ − + +
= −

+
                                                                                                              (5.1.24) 

Recall that  

( ) ( )
,

t j

tf t j A


=                                                                                                                                                   (5.1.25) 

Therefore,  

( )
( )( ) ( )

2

2 2

2 2

1 1

,
t

rk qrk s k srk
t

q s s k t j
f t j C

 

 

 
− − + − −

  − + −
 =                                                                                                               (5.1.26) 

Recall also,  

( ) ( ) ( ) ( ) ( )
1

1, , , ; 0, , 1qt s z z h t s t T h T s  −= + = =                                                                           (5.1.27) 

 

Theorem 1. By equations (5.1.27), (5.1.24), (5.1.23), and (5.1.26), the optimal stock investment 

strategy is given by  
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( )
( )

( ) ( )( )2 2

1 2 2 2

1
1 1 2

2 2

2 21
1

( ) 1

t t

rk qrk r r k srk
tq

q r r s s k

s

t

r z
u c

y t k s q

 − − − − −
 

−  
− + − − −   

 +
 = −
  −
 

  

Proof 

Taking into (5.1.22), (5.1.23), (5.1.25) and (5.1.27) 

 ( )
( )( ) ( )( )( )

( )

2

2 2

2 2

1 1 1

1

1 11
, ,

1

rk qrk s k srk
t

q s s k i i t

q

t

C s
t s z c

z r s

 

   




 
− − + − −

  − + − + 

−

+ − + +
= +

+
                                    (5.1.28) 

Differentiating (5.1.28) with respect to  s and z   

0s =                                                                                                                                              (5.1.29) 

and  

( )( )

2

2 2

2 2
1

1 1 111

1

rk qrk s k srk
t

q s s kq

z z c
q

 




 
− − + − −

 −  − + −−  =
−

                                                                                            (5.1.30)

                   

Therefore, taking into (5.1.30), (5.1.29), (5.1.12) and (4.4) 

( )
( )

( ) ( )( )2 2

1 2 2 2

1
1 1 2

2 2

2 21
1

( ) 1

t t

rk qrk r r k srk
tq

q r r s s k

s

t

r z
u c

y t k s q

 − − − − −
 

−  
− + − − −   

 +
 = −
  −
 

                                                                      (5.1.31) 

where,  

1 22 : 2, 2r r r r r r  = −  = − − = − +                                                                      (5.1.31a) 

Consequently, our C.R.R.A utility function, ( ), ,t s z is given by taking into (5.1.27), (5.1.23), 

(5.1.26) and (5.1.28), thus 

     

          

And this is the C.R.A.A utility function we sort. 

 

( )
( )( ) ( ) ( )

( )

2

2 2

2 2
1

1 1 11
1 1

, , .
1

t

k p k s k s k

p s s k i i tp

t

c s
g t s z z ce

s

    

   

 

 
− − + − 

− 
− + −  +−  

+ − + +  
= +

+
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6. Result and Discussion 

It was observed that the extra stochastic contribution term partially appeared in the utility function, 

but the coefficient did, which does not really guarantee the significance or otherwise to the 

satisfaction of the PFI, considering the assumption of this model. 

7. Conclusion 

We studied and constructed pension wealth investment strategy in a defined contribution pension 

scheme, with more than one contributor. We developed a formula for wealth investment into stock, 

using C.R.R.A utility function. We also developed associated utility function. Based on our 

discovery, we therefore cannot strongly conclude that the stochastic extra contribution as adopted 

by the Pension Fund Investor contributes to the satisfaction of the Pension Fund Member. 

8. Recommendation 

Sensitivity analysis should be done on the optimal strategy and the Optimal utility function, and 

shown pictorially, in order to strongly conclude the relevance of the extra stochastic voluntary 

contribution, and as well, test for sensitivity of some existing parameters in the both the strategy 

and the utility function. 
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